

Probing the Galaxy with Superbubbles 3D Simulations

Nicole Wityk
University of Calgary

Outline

- Analytic Models
- Our Simulations
 - Setup
 - Hydrodynamic Simulations
 - Magnetohydrodynamic Simulations
- Bubbles as Probes
 - Axial ratios
 - Fitting Kompaneets to Magnetized bubbles
 - Faraday Rotation

Analytic Model: Castor

- Analytic solution
- Assumption: Constant Atmosphere
- Spherical evolution
- Solves for the radius a function of time

Analytic Model Kompaneets

- Analytic Solution
- Assumption
 Exponential Atmosphere
- Evolution
 - Early Stages
 - Radius << Scale Height
 - Spherical
 - Late Stages
 - Radius > Scale Height
 - Elongated

Our Simulations

- Fully 3D Numerical Simulations
 - ZEUSMP MHD code (Heyes et al. 2006)
- Adiabatic evolution in an initially isothermal atmosphere
- HD and MHD simulations
- Determine the effects of magnetic fields on bubble morphology
 - Effect of fitting analytic hydrodynamic solutions to magnetized bubbles on values derived from those fits

Our Simulations Setup

- Two ISM density distributions in isothermal medium:
 - Exponential
 - Dickey & Lockman (1990)
- Two magnetic field geometries:
 - B = constant
 - $-B \sim \rho^{1/2}$ (equipartition)
- Magnetic field strength
 - $-\beta = P_{gas} / P_{mag}$
- Resolution: 200 x 200 x 200 (5 pc pixels)

Simulation Hydrodynamic

- Mechanical Luminosity:
 L_{M,Source} = 3 x 10³⁷ erg/s
- Atmosphere: Exponential
- Magnetic Field: None

Simulation Hydrodynamic

Simulation Hydrodynamic

- $L_{M,source} = 3 \times 10^{37} \text{ erg/s}$
- Atmosphere: Dickey & Lockman

Simulation Magnetohydrodynamic

- Mechanical Luminosity: $L_{M,Source} = 3 \times 10^{37} \text{ erg/s}$
- Atmosphere: Exponential
- Magnetic Field:
 Constant B, β = 1

Simulation Magnetohydrodynamic

- L_{M,source}= 3 x 10³⁷ erg/s
- Atmosphere: Exponential
- Constant B, β = 1

Bubbles as Probes

Axial Ratios

 Fitting Kompaneets Solution with continuous injection (Basu et al. 1999) to Magnetized Bubbles

Faraday Rotation

Axial Ratios Y/X

Y/X Axial ratios at level of

Fitting Kompaneets to Magnetized Bubbles

- W4 Chimney
- Located in Perseus arm
- 2.35 kpc away
- Source: OCI 352
 (I,b = 134°.7,0.°9)
- 110 pc across at
 b = 3°.5

Fitting Kompaneets to Magnetized Bubbles

Basu et al 1999 Po

Fitted Kompaneets W4 may k Solution to W4

Kompaneets sol

- Age: 2.5 Myr fiel
- Scaleheight:25pc

What effect do model to a m

derived values?

Local Bubble & Beyond II April 22,

Probing the Galaxy with Superbubbles 3D Simulations

Fitting Kompaneets to Magnetized Bubbles

MANNARES DATA

- Overlate flotopc
- hægneticMyr

Green Overlave

- · Hower values for
- * \$881ēheight by White-Overlay for
- $H = 110 p_0$
- Age = 3.78 Myr

Effect of Magnetic Field

MHD Simulation

- Green arrows:
 direction and strength
 of B field projected
 onto the plane
- Magnetic field wraps around the cavity

Faraday Rotation Small scale structure

Local Bubble & Beyond II April 22,

-3.0

Probing the Galaxy with Superbubbles 3D Simulations

0.0

-2.0

-3.0

-4.0 -2.0 0.0

2.0

4.0

2.0

-3.0

2.0

0.0

Summary

- Bubbles evolve differently depending on magnetic fields present
- Axial ratio in the plane of the Galaxy is independent of magnetic configuration and atmosphere
- Fitting Kompaneets to a magnetized bubble with line of sight along field lines results in smaller scale height
- Rotation Measure maps can reveal the magnetic or density structure of the medium surrounding a superbubble

Work in Progress

Effect of cooling on morphology of magnetized and non magnetized bubbles